

MATHEMATICS EXTENSION 2

Name:

Initial version by I. Ham, April 2020, with additional contributions from M. Ho. Last updated May 20, 2024. Various corrections by students & members of the Mathematics Department at Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 🕞 CC BY 2.0.

Symbols used

- () Beware! Heed warning.
- (A) Mathematics Advanced content.
- (x1) Mathematics Extension 1 content.
- (L) Literacy: note new word/phrase.
- $\mathbb N \;$ the set of natural numbers
- ${\mathbb Z}~$ the set of integers
- ${\mathbb Q}~$ the set of rational numbers
- $\mathbb R~$ the set of real numbers
- $\forall \ \, \text{for all} \\$

Syllabus outcomes addressed

- MEX12-3 uses vectors to model and solve problems in two and three dimensions
- MEX12-7 applies various mathematical techniques and concepts to model and solve structured, unstructured and multi-step problems
- MEX12-8 communicates and justifies abstract ideas and relationships using appropriate language, notation and logical argumen

Syllabus subtopics

 ${\bf MEX-V1}~{\bf Further}~{\bf Work}$ with Vectors

Gentle reminder

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Extension 2* (Sadler & Ward, 2019) or *Mathematics for Australia 12 Specialist Mathematics* (Haese, Haese, & Humphries, 2017) will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Contents

1	Vectors in Three Dimensions	5
	1.1Cartesian Coordinates in Three Dimensions \ldots 1.2Vector algebra in \mathbb{R}^3 \ldots	6 8
	1.2.1 Algebraic representation and operations with vectors $\dots \dots \dots$	8
	1.2.2 (R) Properties of vectors in space	9
	1.2.3 (R) Parallel vectors 1.2.4 Magnitude of a vector and unit vector	10 10
2	The Dot Product	14
	2.1 Algebraic representation	14
	2.2 Geometric representation	14
	2.3 Properties	15
	2.4 Applications	17
	2.4.1 (R) Projections in 3D \ldots	18
3	(R) Vector Proofs in Geometry	20
4	The Vector Equation of a Line	27
	4.1 Introduction	28
	4.2 Lines in 2 Dimensions	29
	4.2.1 Lines through the origin \ldots	29
	4.2.2 The direction vector and the gradient \ldots \ldots \ldots \ldots \ldots \ldots	31
	4.2.3 Lines through a given point \ldots	31
	4.3 Lines in 3 Dimensions	33
	4.4 Skew lines	36
5	Vector Equations of Circles and Spheres	38
	5.1 Equations of circles in two dimensions	38
	5.2 Equations of spheres in 3 dimensions	40
	5.2.1 Vector equation of a sphere	40
	5.2.2 Cartesian equation of a sphere	41
6	Vector Equations of Curves	46
	6.1 (R) Equations of curves in two dimensions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	46
	6.2 Projections of three dimensional curves	47
7	Past examination questions	52
	7.1 2006 VCE Specialist Mathematics	52
	7.1.1 Paper 2 Section $1 \ldots $	52

7.2	2007 VCE Specialist Mathematics	53
	7.2.1 Paper 2 Section 1	53
7.3	2008 VCE Specialist Mathematics	53
	7.3.1 Paper 1	53
	7.3.2 Paper 2 Section 1	53
	7.3.3 Paper 2 Section 2	54
7.4	2009 VCE Specialist Mathematics	54
	7.4.1 Paper 1	54
	7.4.2 Paper 2 Section 1	54
7.5	2010 VCE Specialist Mathematics	55
	7.5.1 Paper 1	55
	7.5.2 Paper 2 Section 1	55
	7.5.3 Paper 2 Section 2	56
7.6	2011 VCE Specialist Mathematics	56
	7.6.1 Paper 1	56
	7.6.2 Paper 2 Section 1	57
7.7	2012 VCE Specialist Mathematics	57
	7.7.1 Paper 2 Section 1	57
7.8	2013 VCE Specialist Mathematics	57
	7.8.1 Paper 1	57
	7.8.2 Paper 2 Section 1	57
	7.8.3 Paper 2 Section 2	58
7.9	2014 VCE Specialist Mathematics	59
	7.9.1 Paper 1	59
	7.9.2 Paper 2 Section 1	59
	7.9.3 Paper 2 Section 2	60
7.10	2015 VCE Specialist Mathematics	60
	7.10.1 Paper 1	60
	7.10.2 Paper 2 Section 1	61
	7.10.3 Paper 2 Section 2	61
7.11	2016 VCE Specialist Mathematics	61
	7.11.1 Paper 2 Section 1	61
7.12	2016 WACE Mathematics Specialist	62
	7.12.1 Calculator free	62
7.13	2017 VCE Specialist Mathematics	62
	7.13.1 Paper 1	62
7.14	2018 VCE Specialist Mathematics	62
-	7.14.1 Paper 2 Section 1	62
7.15	2019 VCE Specialist Mathematics	63
9	7.15.1 Paper 2 Section 1	63
	7.15.2 Paper 2 Section 2	63
eferei	nces	68

References

Section 1

Vectors in Three Dimensions

E Knowledge What are vectors in three dimensions

© Skills

Algebraic with operations three-dimensional vectors

Vunderstanding

Able to interpret operations involving three-dimensional vectors geometrically

Solution By the end of this section am I able to:

- 28.1Understand and use a variety of notations and representations for vectors in three dimensions
- 28.2Perform addition and subtraction of three-dimensional vectors and multiplication of three dimensional vectors by a scalar algebraically and geometrically, and interpret these operations in geometric terms
- 28.3Define, calculate and use the magnitude of a vector in three dimensions
- 28.6Use Cartesian coordinates in two and three-dimensional space

1.1 Cartesian Coordinates in Three Dimensions

Important note

The **direction** of the \underline{z} <u>axis</u> needs to be determined correctly!

Definition 1
Cartesian coordinates in two dimensions
• The two axes divide the plane into <u>four</u> <u>quadrants</u>
• The xy-plane is the plane containing x axis and y axis.
• The three planes, xy-plane, xz-plane and yz-plane, divide the 3D space into eight octants .
Unportant note
• Later at university, 2D space will often be denoted \mathbb{R}^2 (pronounced "R two"), 3D space will be denoted \mathbb{R}^3 (pronounced "R three").
• Some references to \mathbb{R}^2 and \mathbb{R}^3 will be used throughout this summary.
• Scalars continue to be part of real numbers, e.g. $\lambda \in \mathbb{R}$. Vectors belonging to a particular space will be denoted

$$\mathbf{u} \in \mathbb{R}^2$$
 or $\mathbf{v} \in \mathbb{R}^3$

as appropriate.

1.2 Vector algebra in \mathbb{R}^3

1.2.1 Algebraic representation and operations with vectors

Definition 2

Basis vectors in 3D the <u>unit</u> <u>vectors</u> <u>i</u>, <u>j</u> and <u>k</u> are aligned with the x, y and z axis respectively.

i.e.
$$\underline{\mathbf{i}} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ \underline{\mathbf{j}} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \text{ and } \underline{\mathbf{k}} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Definition 3

A vector in three dimensions can be expressed in a variety of forms:

• Ordered triples

$$\overrightarrow{OA}$$
 where $A(a, b, c)$

• Component form:

$$\overrightarrow{OA} = \mathbf{r} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

• Column vector notation:

$$\overrightarrow{OA} = \mathbf{r} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

	2D	3D
	$\underline{\mathbf{u}} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \ \underline{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$	
Equality	$\underline{\mathbf{u}} = \underline{\mathbf{v}} \Leftrightarrow \begin{cases} u_1 = v_1 \\ u_2 = v_2 \end{cases}$	$\underline{\mathbf{u}} = \underline{\mathbf{v}} \Leftrightarrow \begin{cases} u_1 = v_1 \\ u_2 = v_2 \\ u_3 = v_3 \end{cases}$
Zero vector	$\widetilde{0} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$	
Negative	$-\underbrace{\mathbf{u}}_{\sim} = \begin{pmatrix} -u_1 \\ -u_2 \end{pmatrix}$	$-\underbrace{\mathbf{u}}_{\widetilde{\boldsymbol{\omega}}} = \begin{pmatrix} -u_1 \\ -u_2 \\ -u_3 \end{pmatrix}$
Vector addition	$\underline{\mathbf{u}} + \underline{\mathbf{v}} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix}$	
Scalar multiplication	$k\mathbf{\tilde{u}} = \begin{pmatrix} ku_1\\ku_2 \end{pmatrix}$	

Example 1 Find $2\underline{u} - \underline{v}$ when $\underline{u} = \underline{i} + 4\underline{j} - 3\underline{k}$ and $\underline{v} = 2\underline{i} - \underline{j} + \underline{k}$.

1.2.2 (R) Properties of vectors in space

Important note

The following properties are true for vectors in 2D!

Laws/Results

Suppose that $\lambda, \mu \in \mathbb{R}$ and $\underline{u}, \underline{v}$ and \underline{w} are vectors in 3D space.

• $\underline{\mathbf{u}} + \underline{\mathbf{v}} = \underline{\mathbf{v}} + \underline{\mathbf{u}}$

•
$$\underline{\mathbf{u}} + (\underline{\mathbf{v}} + \underline{\mathbf{w}}) = (\underline{\mathbf{u}} + \underline{\mathbf{v}}) + \underline{\mathbf{w}}$$

•
$$\lambda(\mu \underline{\mathbf{y}}) = (\lambda \mu) \underline{\mathbf{y}}$$

- $(\lambda + \mu)\underline{\mathbf{y}} = \dots \underline{\lambda}\underline{\mathbf{y}} + \underline{\mu}\underline{\mathbf{y}}$
- $\lambda(\underline{\mathbf{u}} + \underline{\mathbf{v}}) = \dots \lambda \underline{\mathbf{u}} + \lambda \underline{\mathbf{v}}$
- $|\lambda \underline{\mathbf{u}}| = \dots |\lambda| |\underline{\mathbf{u}}|$

📃 Steps

The above properties can be easily proven with simple algebra. For example, prove

$$\lambda \left(\underbrace{\mathbf{u}} + \underbrace{\mathbf{v}} \right) = \lambda \underbrace{\mathbf{u}} + \lambda \underbrace{\mathbf{v}}$$

for
$$\underline{u}, \underline{v} \in \mathbb{R}^3$$
 and $\lambda \in \mathbb{R}$:

1. Let
$$\underline{\mathbf{u}} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
, $\underline{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$, and λ be a scalar

2. Fully expand out into column vector notation:

$$\lambda (\underline{\mathbf{u}} + \underline{\mathbf{v}}) = \lambda \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \end{bmatrix}$$

$$= \lambda \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix} = \begin{pmatrix} \lambda (u_1 + v_1) \\ \lambda (u_2 + v_2) \\ \lambda (u_3 + v_3) \end{pmatrix}$$

$$= \begin{pmatrix} \lambda u_1 + \lambda v_1 \\ \lambda u_2 + \lambda v_2 \\ \lambda u_3 + \lambda v_3 \end{pmatrix} = \begin{pmatrix} \lambda u_1 \\ \lambda u_2 \\ \lambda u_3 \end{pmatrix} + \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \lambda v_3 \end{pmatrix}$$

$$= \frac{\lambda \underline{\mathbf{u}} + \lambda \underline{\mathbf{v}}}{\dots}$$

1	0												VE	CTOR	s in	Thre	e Di	MENSIO	NŚ –	Vec	TOR	, AL	GEBR	A IN	\mathbb{R}^3	
											:				*				*					•		
1	.2.	.3	(R) I	Paral	lel	ve	cto	\mathbf{rs}						*				*		• • • • • • • •	•••••				
				Def	initio	n 4			:		:				•							:		:		
	S	Sup	pos • Τ [.] nι	e th wo ımb	at $\underline{\mathfrak{u}}$ vecto er λ .	anc rs <u>j</u>	l <u>v</u> 1 ai	$\in \mathbb{R}$	₹ ³ . ⊻ 8	are p	oara	alle	el if	<u>v</u> =	λu	ļ for	son		non	l		Z	ero			
		•	• T	hey	have	the	e sa	me	diı	recti	on	if λ	> 0).												
			• T	hey	are a	nti	i-pa	ara	llel	l if)	۱ <	0.														
1	.2.	.4	Μ	[ag1	nitud	le c	of a	ι V€	ect	or a	nd	ur	nit v	vecto	or							· · · · · · · · · · · · · · · · · · ·				
				E	xamı	ole	2										· · · · · · · · · · · · · · · · · · ·									
	(a.)	T	Drav	v the	rec	etan	ເອົາງໄ	lar	bloc	k w	vith	fac	es na	arall	lel to	o the	e thre	e co	ord	inat	te r	lane	es		
	()	s	uch	that	(0,	0,0)) a	nd	(3, -	-2,	4) a	are o	oppo	site	vert	tices			Ca.						
																(3										
	(b)	ł	Ienc	e fin	d tł	ne r	nag	gnit	ude	of t	the	vect	tor <u>u</u>	ļ =	$\left(\begin{array}{c} -\frac{2}{4} \\ 4\end{array}\right)$	2									 ••••
			т	ו יר	.1		,	,	1		. 1			1.	,.	$\setminus 4$	/									 •••
	(c)	ł	find	the	uni	t ve	ecto	or h	avır	ig ti	he s	same	e dir	ecti	on a	s ų.									
•••••		1)	т	ו יר			• ,].	ſ			r	J	4 1			, 1					1.				
		d)		ind	ther	ກອດ	mit	11716	דרה ב	11 -			ana	TNA	111111	r vec	tor b	avind	rthe	521	me (dire	oct ic	m		
•••••	((d)	1	and	the r	nag	gnit	uae	e oi	<u>u</u> =		$\left(\frac{1}{z}\right)$	and	tne	unn	t vec	tor I	naving	g the	sai	me (dıre	ectic	on		 •••
	(d)	a	' ind is <u>u</u> .	the r	nag	gnit	uae	e oi	<u>u</u> =		/ z)	and	tne	unn	t vec	tor I	naving	g the	sai	ne (dır€	ectic	n		
• • • • • • • •	() (1	d)	e F	rind s y. Find	the r	nag dist		uae :e b	petv	u = veen	$\begin{cases} 2\\ 2\\ 2\\ \end{pmatrix}$	= (and a_1, c	the a_2, a_3) ar	t vec nd <i>B</i>	tor I S = ($b_1, b_2,$	g the $b_3).$	sai	ne (dır€	ectic	n		
· · · · · · · · · · · · · · · · · · ·	() () 	d) e)	r a F	find s <u>u</u> . Find	the the	nag dist		uae ce b	e or oetv	ų = veen		$\left(\frac{1}{z}\right)$	and a_1, c	the u_2, a_3) ar	nd B	tor I $B = ($	$b_1, b_2,$	g the b_3).	sai	ne	dire	ectic)n		
	(d) e)	r a F	find s y. Find	the r	nag dist		uae e b	petv	ų = ween		$\left(\frac{1}{z} \right)$	and a_1, c	the u_2, a_3) ar	nd B	tor I $B = ($	$b_1, b_2,$	g the b_3).	sai	me	dıre	ectic)n		
	(d)	r a I	find s y. Find	the	dist		ze b	petv	ų = ween		$\left(\frac{1}{2}\right)$	a_1, c	the l_2, a_3) ar	nd <i>B</i>	tor I $B = ($	$b_1, b_2,$	g the b_3).	sai	me	dıre	ectic)n		
·····	(,	(d) (e)	r a F	find Is y. Find	the i	dist		e b	petv	ų = ween		/ = (a_1, c	u_2, a_3) ar	nd <i>B</i>	tor I $P = ($	$b_1, b_2,$	b_3).	sai	me	dıre	etic)n		
	((d) e)	F	find	the i	dist		ude	petv	u =) = (a_1, c	u_2, a_3) ar	nd <i>B</i>	tor $P = ($	$b_1, b_2,$	b_3).	sai	me	dire		n		
	((d)	I	ind s. u.	the i	dist		ce b	petv	<u>u</u> =) = (and a ₁ , a	u_2, a_3) ar	nd <i>B</i>	tor I	$b_1, b_2,$	b_3).	sai	me	dire	ect1C)n		
		d) e)	I a F	s u.	the i	dist		e b	petv	u =) = (and (a1, c	u_2, a_3) ar	nd <i>B</i>	tor I	$b_1, b_2,$	g the	sai	me	dire	ectic)n		
		d) e)	I F F	ind s u.	the i	dist		ude	petv	u =) = (and	<i>u</i> ₂ , <i>a</i> ₃) ar	nd <i>B</i>	tor I	$b_1, b_2,$	g the	sai	me	dire	ectic)n		
		d) e)	I F	ind s u.	the i	dist		ce b		u =) = (and	u_2, a_3) ar	nd <i>B</i>	tor I	$b_1, b_2,$	g the	sai	me	dire	ectic)n		
		d) e)	I	ind s u.	the	dist		ze b	petv	u =) = (and	u_2, a_3) ar	nd <i>B</i>	tor I	$b_1, b_2,$	g the	sai	me		ectic)n		
		d) e)	I	ind s u.	the i	dist		ze b	petv	u =) = (u_2, a_3) ar	nd <i>B</i>	$\mathbf{b} = (\mathbf{c} + \mathbf{c})$	$b_1, b_2,$	g the	sai	me		ectic)n		
		d) e)	I	ind s u.	the	list		e b	petv	u =) = (and	the l_2, a_3) ar	nd <i>B</i>	$\mathbf{P} = (\mathbf{P})$	$b_1, b_2,$	g the	sai	me	dire	ectic	n		
		d) e)	I	ind s u.	the i	list		e b	petv	u =) = (the u_2, a_3) ar	nd <i>B</i>	$\mathbf{P} = (\mathbf{P})$	$b_1, b_2,$	g the	sai	me	dire	ectic	n		
		d) e)	I	ind s u.	the i	dist		e b	petv	u =) = (u_2, a_3) ar	nd <i>B</i>	tor 1	1av1ng	g the	Sai	me	dire	ectic	n		
		d) e)	I	ind s u.	the i	dist		e b	petv	u =		ζ) = (u_2, a_3) ar	nd <i>B</i>	tor I	1av1ng	g the	Sai	me	dire	ectic	n		

NORMANHURST BOYS' HIGH SCHOOL

FURTHER WORK WITH VECTORS

Section 2

The Dot Product

Knowledge What is dot product of three-dimensional vectors

Definition 7

Skills How to calculate dot product of three-dimensional vectors

V Understanding

Able to interpret dot product of three-dimensional vectors algebraically and geometrically

☑ By the end of this section am I able to:

28.4 Define and use the scalar (dot) product of two vectors in three dimensions

2.1 Algebraic representation

Suppose that
$$\underline{\mathbf{u}} = \overrightarrow{OU} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 and $\underline{\mathbf{v}} = \overrightarrow{OV} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$. Then,

 $\underbrace{\mathbf{u}} \cdot \underbrace{\mathbf{v}} = u_1 v_1 + u_2 v_2 + u_3 v_3$

2.2 Geometric representation

Definition 8

The angle θ between two vectors \underline{u} and \underline{v} can be found using

$$\cos \theta = \frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{\left|\underline{\mathbf{u}}\right| \left|\underline{\mathbf{v}}\right|}$$

Proof

1. Draw situation representing the angle θ between two vectors \underline{u} and \underline{v} , and vector $\underline{v} - \underline{u}$.

2. Let
$$|\underline{\mathbf{u}}| = a$$
, $|\underline{\mathbf{v}}| = b$ and $|\underline{\mathbf{v}} - \underline{\mathbf{u}}| = c$. Find a, b and c

3. Apply the cosine rule to the triangle:

4. Consequently,

2.3 Properties

- $\mathbf{\underline{u}} \cdot \mathbf{\underline{u}} = \left|\mathbf{\underline{u}}\right|^2$
- $\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = \underline{\mathbf{v}} \cdot \underline{\mathbf{u}}$
- $\mathbf{\underline{u}} \cdot (\lambda \mathbf{\underline{v}}) = \lambda (\mathbf{\underline{u}} \cdot \mathbf{\underline{v}})$
- $\underline{\mathbf{u}} \cdot (\underline{\mathbf{v}} + \underline{\mathbf{w}}) = \underline{\mathbf{u}} \cdot \underline{\mathbf{v}} + \underline{\mathbf{u}} \cdot \underline{\mathbf{w}}$
- If both <u>u</u> and <u>v</u> are non-zero vectors, then
 - (i) $\underline{\mathbf{u}} \cdot \underline{\mathbf{v}} = 0 \iff \underline{\mathbf{u}} \text{ and } \underline{\mathbf{v}} \text{ are }$ <u>perpendicular</u>
 - (ii) $|\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}| = |\underline{\mathbf{u}}| |\underline{\mathbf{v}}| \iff \underline{\mathbf{u}} \text{ and } \underline{\mathbf{v}} \text{ are } \underline{\text{parallel}} ...$

Further Work With Vectors

NORMANHURST BOYS' HIGH SCHOOL

2.4 Applications Example 12

Find the angle at the origin subtended by AB for the points A = (1, 1, 2) and B = (-2, 3, -1). Round the answer to the nearest degree.

NORMANHURST BOYS' HIGH SCHOOL

FURTHER WORK WITH VECTORS

R Vector Proofs in Geometry

Eearning Goal(s)

Knowledge How to prove geometrical results **Construct** proofs logically and coherently

Orderstanding How proofs work with three-dimensional vectors

 $\ensuremath{\boxdot}$ By the end of this section am I able to:

28.5 Prove geometric results in the plane and construct proofs in three dimensions

Example 15

(Sadler & Ward, 2019) Point C is outside a circle with centre O. The points of contact of the two tangents from C to the circle are A and B. Let $\overrightarrow{OA} = \underline{a}, \overrightarrow{OB} = \underline{b}$ and $\overrightarrow{OC} = \underline{c}$. Prove the following.

- (a) Tangents CA and CB subtend equal angles at the centre O.
- (b) CA = CB

State the conditions on $\left| \underbrace{\mathbf{p}} \right|$ and $\left| \underbrace{\mathbf{q}} \right|$ such that \overrightarrow{OR} bisects $\angle POQ$, ii. giving brief reason(s).

(b) The following figure shows
$$\overrightarrow{OE} = \underline{u} = \begin{pmatrix} 2\\5\\-7 \end{pmatrix}$$
 and $\overrightarrow{OF} = 3\underline{v} = \begin{pmatrix} 15\\21\\6 \end{pmatrix}$.

- G is a point such that \overrightarrow{OG} bisects $\angle EOF$ and $\overrightarrow{EG} = \lambda y$, where i. $\lambda \in \mathbb{R}$. Find the vector \overrightarrow{OG} in column vector notation.
- State the name of the shape formed by OEGF, and a brief reason ii. for why OEGF forms this shape.
- Show that the area A of, OEGF is iii.

$$A = 2\sqrt{5123}$$

Hint: Consider proj_v <u>u</u>.

22

(a)

2

2

 $\mathbf{2}$

3

NORMANHURST BOYS' HIGH SCHOOL

	•	(R	Vi	ECTOR	ı Pr	OOF	S IN	ı Gi	EOM	[ET]	RY -					•						•				23		
																 				 			 			 			••••
																								: : :		 			
													•••••			 				 			 		 	 			
													• • • • •													 			
••••••			•••••								• • • • •		•••••							 	•••••		 						
				•••••							• • • • •		•••••			 				 			 •		 	 			
••••••				•••••			· · ·						• • • • • •			 		•••••		 ••••	•••••		 • • • • • •		 	 	•••••		••••
•••••••											• • • • •		•••••			 				 			 •		 	 			••••
•••••••				•••••							• • • • •		•••••			 				 			 •		 	 		••••	••••
•••••••				•••••									•••••	•••••	: 	 		•••••		 ••••		•••••••	 •		 	 		••••	••••
••••••				•••••									•••••	•••••		 		•••••	•••••	 •••••	•••••		 • • • • • •	 		 		••••	••••
																 				 		-	 •		 	 			••••
																						-			 				
••••••			•••••	•••••									•••••	•••••		 		•••••		 ••••	• • • • • • •		 •		 	 		••••	••••
														•••••		 				 	•••••		 •		 	 			••••
••••••				•••••							• • • • •		•••••			 		•••••		 ••••			 •		 	 			••••
•••••••••••••••••••••••••••••••••••••••				•••••		: : :								•••••	:	 				 ••••	•••••					 	•••••		••••
													••••••			 				 ••••			 			 			••••

• •	 	 	 									
			'NT (JD'M	A NULL	TIDCT	DOVC	2 TITCH	ICOL	IGO	T .	
			710	JUNI	AINT	URSI	DUIS	I I G L	i sur	100	ш. —	
÷ -	 	 										

FURTHER WORK WITH VECTORS

Example 19

[2020 Ext 2 HSC Q15] The point C divides the interval AB so that $\frac{CB}{AC} = \frac{m}{n}$. The position vectors of A and B are a and b respectively, as shown in the diagram.

i. Show that $\overrightarrow{AC} = \frac{n}{m+n} (\underline{b} - \underline{a}).$

ii. Prove that
$$\overrightarrow{OC} = \frac{m}{m+n} \mathbf{a} + \frac{n}{m+n} \mathbf{b}$$
.

Let OPQR be a parallelogram with $\overrightarrow{OP} = p$ and $\overrightarrow{OR} = r$. The point S is the midpoint of QR and T is the intersection of PR and OS, as shown in the diagram.

iii. Show that $\overrightarrow{OT} = \frac{2}{3}\overrightarrow{r} + \frac{1}{3}\overrightarrow{r}$.

iv. Using parts (ii) and (iii), or otherwise, prove that T is the point that divides the interval PR in the ration 2:1.

NORMANHURST BOYS' HIGH SCHOOL

2 1

3

Section 4

The Vector Equation of a Line

Knowledge What is vector equation

📽 Skills 👘

Find vector equation and determine when two lines are parallel, perpendicular or skewed **Vunderstanding** The use of vector equation

Solution By the end of this section am I able to:

- 28.9 Understand and use the vector equation $\underline{\mathbf{r}} = \underline{\mathbf{a}} + \lambda \underline{\mathbf{b}}$ of a straight line through points A and B where R is a point on AB, $\underline{\mathbf{a}} = \overrightarrow{OA}$, $\underline{\mathbf{b}} = \overrightarrow{OB}$, λ is a parameter and $\underline{\mathbf{r}} = \overrightarrow{OR}$.
- 28.10 Make connections in two dimensions between the equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and y = mx + c.
- 28.11 Determine a vector equation of a straight line or straight-line segment, given the position of two points or equivalent information, in two and three dimensions
- 28.12 Determine when two lines in vector form are parallel
- 28.13 Determine when intersecting lines are perpendicular in a plane or three dimensions
- 28.14 Determine when a given point lies on a given line in vector form

The Vector	EQUATION	OF .	À	Line –	INTROI	DUCTI	ION
------------	----------	------	---	--------	--------	-------	-----

4.1 Introduction

28

- **Fill in the spaces**
- 1-Dimension: x = 0 is a point on a real number line.
- 2-Dimension: x = 0 is a <u>line</u> on a 2D x-y plane.
- 3-Dimension: x = 0 is a plane in a 3D space with x, y, z axes as coordinate axes.

Important note

In three dimensions,

- A linear equation with x, y, z with non-zero coefficients represents a <u>plane</u>....
- Cartesian form of a line is essentially a system of two linear equations (Two intersecting planes always form a line).

Fill in the spaces

- In both 2-dimensional and 3-dimensional geometry, the **equation of a line** can be determined using its <u>direction</u> and any <u>fixed</u> <u>point</u> on the line.
- On a **2D x-y** coordinate plane, there is only <u>one</u> line through a fixed point with a certain gradient.
- In **3D** space, is there also only one line through a fixed point with a certain gradient?

Important note

A line in **3D** can be specified by a <u>point</u> on the line and a vector <u>parallel</u> to it.

The Ve	CTOR EQUATION OF A LINE – LINES IN 2 DIMENSIONS 29
4.2	Lines in 2 Dimensions
4.2.1	Lines through the origin
	Definition 10
Let vari	O be the origin and let B be another point with position vector \underline{b} . Let R be a value point in OB with position vector r.
	r r
	b
Sine	ce $OB \parallel OR$, the equation of the line through the origin and another point B
W10	$\frac{1}{2} \text{ position vector } \mathcal{D} \text{ has vector equation}$
	$\underline{\mathbf{r}} = \lambda \underline{\mathbf{b}}, \text{where } \lambda \in \mathbb{R}$
	Important note
	• The position vector of every point in OB is obtained as λ varies.
	• λ is a <u>parameter</u> .
	Example 20
(a)	Find the vector equation of the line through the origin and the point $B(2,3)$.
	Write the components of the vector equation found in (a).
(c)	Find the Cartesian equation

4.3 Lines in 3 Dimensions

- **Definition 12**
 - In **3D**, the vector equation of the line through $A(a_1, a_2, a_3)$ with position vector <u>a</u> and parallel to $\underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is

$$\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$$

i.e.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

where $\lambda \in \mathbb{R}$.

• Equivalently, its **parametric equations** are

$$\begin{cases} x = a_1 + \lambda b_1 \\ y = a_2 + \lambda b_2 \\ z = a_3 + \lambda b_3 \end{cases}$$

Important note

A point with position vector $\mathbf{r}_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$ lies on the line with vector equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ if and only if there exists a real value λ such that $\mathbf{r}_0 = \mathbf{a}_0 + \lambda \mathbf{b}$.

Example 26

Find the vector equation of the line through A parallel with OB, where A = (-2, -1, 3) and B = (1, 0, 1). Then determine whether or not C = (0, -1, 4) is on this line.

Further Work With Vectors

NORMANHURST BOYS' HIGH SCHOOL

Example 29

What is the vector equation of the line perpendicular to 2x - 3y + 4 = 0 which passes through the point (-5, 6)?

Let
$$\underline{u} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$
 and $\underline{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.
(a) Find the projection of \underline{u} onto \underline{v} .

(b) Hence find the shortest distance of the point (2, -1 - 1) from the line

$$\mathbf{r} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\2 \end{pmatrix}$$

where $\lambda \in \mathbb{R}$.

4.4 Skew lines

- **Fill in the spaces**
- In **2D**, two non-parallel lines always <u>intersect</u>
- Does this hold true in 3D? ...NO .

Definition 13

In **3D**, the **non-parallel** lines that **do not intersect** are called <u>skew</u> lines.

Example 31

The lines ℓ_1 , ℓ_2 and ℓ_3 are given by

$$\ell_1 : \underline{r}_1 = \begin{pmatrix} 3\\-2\\1 \end{pmatrix} + \lambda \begin{pmatrix} -1\\2\\3 \end{pmatrix} \qquad \ell_2 : \underline{r}_2 = \begin{pmatrix} 2\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 2\\-4\\-6 \end{pmatrix}$$
$$\ell_3 : \underline{r}_3 = \begin{pmatrix} 6\\-2\\-2 \end{pmatrix} + \nu \begin{pmatrix} -2\\1\\3 \end{pmatrix}$$

where $\lambda \in \mathbb{R}$

- (a) Prove that ℓ_1 and ℓ_2 are parallel.
- (b) Prove that ℓ_2 and ℓ_3 are skew.

Section 5

Vector Equations of Circles and Spheres

Learning Goal(s)

E Knowledge

Vector equations of circles and spheres

Skills Find vector equations of circles and spheres

Vunderstanding

The use of parameters in vector equations of circles and spheres

Solution By the end of this section am I able to:

28.7 Recognise and find the equations of spheres

28.8 Use vector equations of curves in two or three dimensions involving a parameter, and determine a corresponding Cartesian equation in the two-dimensional case, where possible

5.1 Equations of circles in two dimensions

Definition 14

The point V with position vector $\underline{\mathbf{v}}$ lies on the circle with radius r and centre the origin if

 $\left| \underbrace{\mathbf{v}} \right| = r$

Example 32

Determine the point on the circle with centre the origin and radius 2 which is closest to the line 2x + 4y - 15 = 0, using vectors.

Definition 15

Translate the circle $|\underline{\mathbf{y}}| = r$ so that the centre is at C with position vector $\underline{\mathbf{c}}$. Then,

 $\left| \underbrace{\mathbf{v}} - \underbrace{\mathbf{c}} \right| = r$

where $\underline{\mathbf{y}}$ is the position vector of a variable point on the circle with centre $\underline{\mathbf{c}}$ and radius r.

Example 33

The line $\underline{\mathbf{v}} = \begin{pmatrix} 2\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2 \end{pmatrix}$ intersects the circle with centre $\underline{\mathbf{c}} = \begin{pmatrix} 1\\-2 \end{pmatrix}$ and radius 3 at P and Q. The midpoint of chord PQ is M. Find the coordinates of M.

NORMANHURST BOYS' HIGH SCHOOL

FURTHER WORK WITH VECTORS

5.2 Equations of spheres in 3 dimensions

5.2.1 Vector equation of a sphere

Definition 16

- A **sphere** is defined as the set of points in three-dimensional space equidistant from a fixed point in space.
- The form of the **vector equation** of a sphere is identical to that of a <u>circle</u> in two dimensions.
- Let \underline{v} be the <u>position</u> <u>vector</u> of a variable point on the sphere with centre \underline{c} and radius r. Then,

$$\left|\underline{\mathbf{v}} - \underline{\mathbf{c}}\right| = r$$

where each vector has <u>three</u> components.

NORMANHURST BOYS' HIGH SCHOOL

FURTHER WORK WITH VECTORS

Example 39 [2021 Ext 2 HSC Q16]

i. The point P(x, y, z) lies on the sphere of radius 1 centred at the origin O.

Using the position vector of $P, \overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and the triangle inequality, or otherwise, show that $|x| + |\widetilde{y}| + |\widetilde{z}| \ge 1$.

ii. Given the vectors
$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, show that **3**

$$|a_1b_1 + a_2b_2 + a_3b_3| \le \sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}$$

iii. As in part (i), the point P(x, y, z) lies on the sphere of radius 1 centred at the origin O.

Using part (ii), or otherwise, show that $|x| + |y| + |z| \le \sqrt{3}$.

Eurther exercises

 $\mathbf{Ex 5G}$ (Sadler & Ward, 2019)

• Q1-9, 11-16, 18-19

 $\mathbf{2}$

 $\mathbf{2}$

Section 6

Vector Equations of Curves

6.1 (R) Equations of curves in two dimensions

Knowledge

Projection of three dimensional curves onto a two dimensional plane

Example 40

Learning Goal(s)

📽 Skills

Find Cartesian equation of the projection onto a two dimensional plane

Vunderstanding

Visualise how the projections onto the x-y, y-z and x-zplane determine the shape and direction of the three dimensional curve

Solution By the end of this section am I able to:

Use vector equations of curves in two or three dimensions involving a parameter, and determine a corresponding Cartesian equation in the two-dimensional case, where possible

Sketch the curve with vector equation:

Important note

$$\mathbf{r} = \begin{pmatrix} \sin t \\ t \end{pmatrix}$$

U

28.8

Hint Find the Cartesian equation with the domain and range for $t \in \mathbb{R}$.

6.2 **Projections of three dimensional curves**

Definition 18

 $\begin{array}{ccc} {\bf Curves \ in \ three \ dimensions} & {\rm can \ be visualised \ by examining \ their \ projection \ onto \\ {\rm the} & {\rm two} & {\rm dimensional} & {\rm planes} \end{array}.$

(b) (URL) GeoGebra 3D Calculator

NORMANHURST BOYS' HIGH SCHOOL

49

Consider the two curves with vector equations:

$$\underline{\mathbf{r}} = \begin{pmatrix} \sin t \\ \cos t \\ t \end{pmatrix} \text{ and } \underline{\mathbf{s}} = \begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix} , t \in \mathbb{R}$$

For each curve, sketch the projection on the:

(a) :

- x-y plane
- (b) y-z plane

(c) x-z plane

Answer: see GeoGebra: vector \underline{r} ; vector \underline{s}

[2021 Ext 2 HSC Q7] Which diagram best shows the curve described by the position vector $\underline{\mathbf{r}}(t) = -5\cos(t)\underline{\mathbf{i}} + 5\sin(t)\underline{\mathbf{j}} + t\underline{\mathbf{k}}$ for $0 \le t \le 4\pi$?

51

 $\mathbf{Ex} \ \mathbf{5G} \quad (\mathrm{Sadler} \ \& \ \mathrm{Ward}, \ 2019)$

• Q10, 17, 20

Section 7

Past examination questions

- Questions in this section originate from various VCE or WACE papers.
- Questions earmarked ? indicates that it is uncertain whether a question of this type can appear in the new 2019-2020 syllabuses. It is uncertain due to one, or both of the following:
 - Level of difficulty does it get this difficult?
 - Reach into other parts of the syllabuses does it go this far outside of the scope?
- Two additional terms which are not used in the NSW Syllabuses but have equivalents:

Definition 19

Vector resolute is synonymous with the the vector projection.

Definition 20

Scalar projection is the length of the vector projection, with a negative sign if the projection has an opposite direction with respect to \underline{b}

7.1 2006 VCE Specialist Mathematics

7.1.1 Paper 2 Section 1

16. A unit vector perpendicular to $5\underline{i} + \underline{j} - 2\underline{k}$ is

(A)
$$\frac{1}{4} \left(5\underline{i} + \underline{j} - 2\underline{k} \right)$$
 (C) $\frac{1}{29} \left(2\underline{i} - 4\underline{j} + 3\underline{k} \right)$ (E) $\frac{1}{\sqrt{30}} \left(5\underline{i} + \underline{j} - 2\underline{k} \right)$
(B) $2\underline{i} - 4\underline{j} + 3\underline{k}$ (D) $\frac{1}{\sqrt{29}} \left(2\underline{i} - 4\underline{j} + 3\underline{k} \right)$

17. Let $\underline{u} = \underline{i} + \underline{j}$ and $\underline{v} = \underline{i} + 2\underline{j} + 2\underline{k}$. The angle between the vectors \underline{u} and \underline{v} is

(A) 0° (B) 45° (C) 30° (D) 22.5° (E) 90°

7.2 2007 VCE Specialist Mathematics

7.2.1 Paper 2 Section 1

15. In the cartesian plane, a vector perpendicular to the line 3x + 2y + 1 = 0 is

(A) $3\underline{i} + 2\underline{j}$ (C) $2\underline{i} - 3\underline{j}$ (E) $2\underline{i} + 3\underline{j}$

(B)
$$-\frac{1}{2}i + \frac{1}{3}j$$
 (D) $\frac{1}{2}i - \frac{1}{3}j$

17. The angle between the vectors $\underline{a} = \underline{i} - 2\underline{j} - 2\underline{k}$ and $\underline{b} = 2\underline{i} + \underline{j} + 2\underline{k}$ is best represented by

(A)
$$-\frac{4}{9}$$
 (C) $\pi + \cos^{-1}\left(-\frac{4}{9}\right)$ (E) $\cos^{-1}\left(\pi - \frac{4}{9}\right)$
(B) $-\cos^{-1}\left(\frac{4}{9}\right)$ (D) $\pi - \cos^{-1}\left(\frac{4}{9}\right)$

18. Let $\underline{u} = 2\underline{i} - \underline{j} - 2\underline{k}$ and $\underline{v} = a\underline{i} + 2\underline{j} - \underline{k}$. If the scalar resolute of \underline{v} in the direction of \underline{u} is 1, then the value of \underline{a} is

(A)
$$-\frac{3}{2}$$
 (B) $-\frac{2}{3}$ (C) 3 (D) $\frac{2}{3}$ (E) $\frac{3}{2}$

7.3 2008 VCE Specialist Mathematics

7.3.1 Paper 1

Question 8

The coordinates of three points are A(1,0,5), B(-1,2,4) and C(3,5,2).

(a) Express the vector \overrightarrow{AB} in the form $x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$.

(b) Find the coordinates of the point D such that ABCD is a parallelogram.

(c) Prove that ABCD is a rectangle.

7.3.2 Paper 2 Section 1

14. If the vectors $\underline{a} = m\underline{i} + 4\underline{j} + 3\underline{k}$ and $\underline{b} = m\underline{i} + m\underline{j} - 4\underline{k}$ are perpendicular, then

(A) m = 0 (C) m = -2 or m = 6 (E) m = -1 or m = 1(B) m = -6 or m = 2 (D) m = -2 or m = 0 1

2

7.3.3 Paper 2 Section 2

Question 3

The position vector $\underline{\mathbf{r}}(t)$ of the front of a toy train at time t seconds on a closed track is given by

$$\underline{\mathbf{r}}(t) = \sin\left(\frac{t}{3}\right)\underline{\mathbf{i}} + \frac{1}{2}\sin\left(\frac{2t}{3}\right)\underline{\mathbf{j}}, \quad t \ge 0$$

where displacement components are measured in metres.

(a) If the front of the train is at the point P(x, y) at time t, show that

$$y^2 = \sin^2\left(\frac{t}{3}\right)\cos^2\left(\frac{t}{3}\right)$$

(b) Hence, find the cartesian equation of the path of the train.

1

1

7.4 2009 VCE Specialist Mathematics

7.4.1 Paper 1

Question 3

Resolve the vector 5i + j + 3k into two vector components, one which is parallel to the vector -2i - 2j + k and one which is perpendicular to it.

7.4.2 Paper 2 Section 1

16. Consider the three vectors $\underline{a} = 2\underline{i} - 3\underline{j} + 4\underline{k}, \underline{b} = -3\underline{i} + 4\underline{j} - \underline{k}$ and $\underline{c} = 13\underline{i} + 10\underline{j} + \underline{k}$. It follows that

- (A) $\underset{\sim}{\underline{c}}$ and $\underset{\sim}{\underline{b}}$ are perpendicular to $\underset{\sim}{\underline{a}}$
- (B) $\underset{\sim}{c}$ is only perpendicular to $\underset{\sim}{b}$
- (C) $\underset{\sim}{c}$ is only perpendicular to $\underset{\sim}{a}$
- (D) \underline{a} and \underline{b} are perpendicular to \underline{c}
- (E) \underline{a} is only perpendicular to \underline{b}

1

3

7.5 2010 VCE Specialist Mathematics

7.5.1 Paper 1

Question 3

Relative to an origin O, point A has cartesian coordinates (1, 2, 2) and point B has cartesian coordinates (-1, 3, 4).

- (a) Find an expression for the vector \overrightarrow{AB} in the form $a\underline{i} + b\underline{j} + c\underline{k}$. 1
- (b) Show that the cosine of the angle between the vectors \overrightarrow{OA} and \overrightarrow{AB} is $\frac{4}{6}$.
- (c) Hence, find the exact area of the triangle OAB.

7.5.2 Paper 2 Section 1

15. The scalar resolute of $\underline{a} = 3\underline{i} - \underline{k}$ in the direction of $\underline{b} = 2\underline{i} - \underline{j} - 2\underline{k}$ is

(A)
$$\frac{8}{\sqrt{10}}$$
 (B) $\frac{8}{9}(2\underline{i} - \underline{j} - 2\underline{k})$ (D) $\frac{4}{5}(3\underline{i} - \underline{k})$
(C) 8 (E) $\frac{8}{3}$

16. The square of the magnitude of the vector $\mathbf{d} = 5\mathbf{i} - \mathbf{j} + \sqrt{10}\mathbf{k}$ is

(A) 6 (B) 34 (C) 36 (D) 51.3 (E) $\sqrt{34}$

17. The angle between the vectors $\underline{a} = \underline{i} + \underline{k}$ and $\underline{b} = \underline{i} + \underline{j}$ is exactly

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$ (E) π

7.5.3 Paper 2 Section 2

Question 1

The diagram below shows a triangle with vertices O, A and B. Let O be the origin, with vectors $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$.

Find the following vectors in terms of \underline{a} and \underline{b} . (a) \overrightarrow{MA} , where M is the midpoint of the line segment OA. i. 1 \overrightarrow{BA} . ii. 1 \overrightarrow{AQ} , where Q is the midpoint of the line segment AB. iii. 1 (b) Let N be the midpoint of the line segment OB. Use a vector method to 3 prove that the quadrilateral MNQA is a parallelogram. Now consider the **particular** triangle OAB with $\overrightarrow{OA} = 3i + 2j + \sqrt{3}k$ and $\overrightarrow{OB} = \alpha i$. where α , which is greater than zero, is chosen so that the $\triangle OAB$ is isosceles, with $= \left| \overrightarrow{OA} \right|.$ $|O\vec{B}|$ (c)Show that $\alpha = 4$. 1

(d) i. Find \overrightarrow{OQ} , where Q is the midpoint of the line segment AB. **1** ii. Use a vector method to show that \overrightarrow{OQ} is perpendicular to \overrightarrow{AB} . **3**

7.6 2011 VCE Specialist Mathematics

7.6.1 Paper 1

Question 9

Consider the three vectors

$$\mathbf{a} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
 $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + m\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k}$

where $m \in \mathbb{R}$.

- (a) Find the value(s) of m for which $|\underline{b}| = 2\sqrt{3}$.
- (b) Find the value of m such that \underline{a} is perpendicular to \underline{b} .

2

7.6.2 Paper 2 Section 1

- 12. The angle between the vectors 3i + 6j 2k and 2i 2j + k, correct to the nearest tenth of a degree, is
 - (A) 2.0° (C) 112.4° (E) 124.9°
 - (B) 91.0° (D) 121.3°

7.7 2012 VCE Specialist Mathematics

7.7.1 Paper 2 Section 1

15. The vectors $\underline{a} = 2\underline{i} + m\underline{j} - 3\underline{k}$ and $\underline{b} = m^2\underline{i} - \underline{j} + \underline{k}$ are perpendicular for

(A)
$$m = -\frac{2}{3}$$
 and $m = 1$ (C) $m = \frac{2}{3}$ and $m = -1$ (E) $m = 3$ and $m = -1$
(B) $m = -\frac{3}{2}$ and $m = 1$ (D) $m = \frac{3}{2}$ and $m = -1$

7.8 2013 VCE Specialist Mathematics

7.8.1 Paper 1

Question 3

The coordinates of three points are A(-1, 2, 4), B(1, 0, 5) and C(3, 5, 2).

(a) Find
$$\overrightarrow{AB}$$
.

- (b) The points A, B and C are the vertices of a triangle. Prove that the triangle **2** has a right angle at A.
- (c) Find the length of the hypotenuse of the triangle.

7.8.2 Paper 2 Section 1

14. The distance from the origin to the point $P(7, -1, 5\sqrt{2})$ is

(A)
$$7\sqrt{2}$$
 (B) 10 (C) $6 + 5\sqrt{2}$ (D) 100 (E) $5\sqrt{6}$

1

- **15.** Let $\underline{u} = 4\underline{i} \underline{j} + \underline{k}$, $\underline{v} = 3\underline{j} + 3\underline{k}$ and $\underline{w} = -4\underline{i} + \underline{j} + \underline{k}$. Which one of the following statements is **not** true?
 - (A) $|\underline{u}| = |\underline{v}|$ (B) $|\underline{u}| = |-\underline{w}|$ (D) $\underline{u} \cdot \underline{v} = 0$ (E) $(\underline{u} + \underline{w}) \cdot \underline{v} = 12$
 - (C) $\underline{u}, \underline{v}$ and \underline{w} are linearly dependent

Note: A set of vectors is said to be *linearly dependent* if at least one of the vectors in the set can be defined as a linear combination of the others, i.e. If $r_1\underline{u} + r_2\underline{v} + r_3\underline{w} = 0$ for some $r_1, r_2, r_3 \in \mathbb{R}$, where at least one of r_1, r_2, r_3 is non-zero.

7.8.3 Paper 2 Section 2

Question 4

Let
$$\underline{\mathbf{a}} = -\frac{7\sqrt{3}}{3}\underline{\mathbf{i}} + \underline{\mathbf{j}} - 2\underline{\mathbf{k}}$$
 and $\underline{\mathbf{b}} = \underline{\mathbf{i}} + \sqrt{3}\underline{\mathbf{j}} + 2\sqrt{3}\underline{\mathbf{k}}$.

- (a) Find a unit vector in the direction of \underline{b} .
- (b) Resolve \underline{a} into two vector components, one that is parallel to \underline{b} and one that **3** is perpendicular to \underline{b} .
- (c) Find the value of \underline{m} such that $\underline{c} = m\underline{i} + \underline{j} 2\underline{k}$ makes an angle of $\frac{2\pi}{3}$ with \underline{b} **2** and where $\underline{c} \neq \underline{a}$.
- (d) Find the angle, in degrees, that \underline{c} makes with \underline{a} , correct to one decimal place.
- (e) For the triangle ABC shown below, the midpoints of the sides are the points M, N and P. Let $\overrightarrow{AC} = \mathfrak{u}$ and $\overrightarrow{CB} = \mathfrak{y}$.

AIi. Express \overrightarrow{AN} in terms of \underline{u} and \underline{y} .1ii. Express \overrightarrow{CM} and \overrightarrow{BP} in terms of \underline{u} and \underline{y} .2iii. Hence, simplify the expression $\overrightarrow{AN} + \overrightarrow{CM} + \overrightarrow{BP}$.1

 $\mathbf{2}$

1

7.9 2014 VCE Specialist Mathematics

7.9.1 Paper 1

Question 1

Consider the vector $\sqrt{3}i - j - \sqrt{2}k$, where i, j and k are unit vectors in the positive directions of the x, y and \tilde{z} axes respectively.

- (a) Find the unit vector in the direction of a.
- (b) Find the acute angle that a makes with the positive direction of the x-axis. 2
- (c) The vector $\underline{b} = 2\sqrt{3}\underline{i} + m\underline{j} 5\underline{k}$. Given that \underline{b} is perpendicular to \underline{a} , find **2** the value of \underline{m} .

7.9.2 Paper 2 Section 1

15. If
$$\theta$$
 is the angle between $\underline{a} = \sqrt{3}\underline{i} + 4\underline{j} - \underline{k}$ and $\underline{b} = \underline{i} - 4\underline{j} + \sqrt{3}\underline{k}$, then $\cos 2\theta$ is **1**

(A)
$$-\frac{4}{5}$$
 (B) $\frac{7}{25}$ (C) $-\frac{7}{25}$ (D) $\frac{14}{25}$ (E) $-\frac{24}{25}$

- 16. Two vectors are given by $\underline{a} = 4\underline{i} + m\underline{j} 3\underline{k}$ and $\underline{b} = -2\underline{i} + n\underline{j} \underline{k}$, where $m, n \in \mathbb{R}^+$. If $|\underline{a}| = 10$ and \underline{a} is perpendicular to \underline{b} , then m and n respectively are
 - (A) $5\sqrt{3}, \frac{\sqrt{3}}{3}$ (C) $-5\sqrt{3}, \sqrt{3}$ (E) 5, 1

(B)
$$5\sqrt{3}, \sqrt{3}$$
 (D) $\sqrt{93}, \frac{5\sqrt{93}}{93}$

7.9.3 Paper 2 Section 2

Question 3

Let $\underline{a} = 3\underline{i} + 2\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} - 2\underline{j} - \underline{k}$.

- (a) Express <u>a</u> as the **sum** of two vector resolutes, one of which is parallel to <u>b</u> and the other of which is perpendicular to <u>b</u>. Identify clearly the parallel vector resolute and the perpendicular vector resolute.
- (b) OABC is a paralleogram where D is the midpoint of CB. OB and AD intersect at point P. Let $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OC} = \underline{c}$.

- i. Given that $\overrightarrow{AP} = \alpha \overrightarrow{AD}$, write an expression for \overrightarrow{AP} in terms of α , a 2 and c. 2
- ii. Given that $\overrightarrow{OP} = \beta \overrightarrow{OB}$, write another expression for \overrightarrow{AP} in terms of β , **1** a and c.

с.

iii. Hence deduce the values of α and β .

7.10 **2015 VCE Specialist Mathematics**

7.10.1 Paper 1

Question 1

Consider the rhombus OABC shown below, where $\overrightarrow{OA} = a \underline{i}$ and $\overrightarrow{OC} = \underline{i} + \underline{j} + \underline{k}$, and a is a positive real constant. C B

- (a) Find a.
- (b) Show that the diagonals of the rhombus OABC are perpendicular.

1 2

 $\mathbf{2}$

 $\mathbf{5}$

7.10.2 Paper 2 Section 1

17. Points A, B and C have position vectors $\underline{a} = 2\underline{i} + \underline{j}$, $\underline{b} = 3\underline{i} - \underline{j}$ and $\underline{c} = -3\underline{j} + \underline{k}$ respectively. The cosine of angle ABC is equal to

(A)
$$\frac{5}{\sqrt{6}\sqrt{10}}$$
 (B) $\frac{7}{\sqrt{6}\sqrt{13}}$ (C) $-\frac{1}{\sqrt{6}\sqrt{13}}$ (D) $-\frac{7}{\sqrt{21}\sqrt{6}}$ (E) $-\frac{2}{\sqrt{6}\sqrt{13}}$

7.10.3 Paper 2 Section 2

Question 4

The position vector $\underline{\mathbf{r}}(t)$, from origin O, of a model helicopter t seconds after leaving the ground is given by

$$\underline{\mathbf{r}}(t) = \left(50 + 25\cos\frac{\pi t}{30}\right)\underline{\mathbf{i}} + \left(50 + 25\sin\frac{\pi t}{30}\right)\underline{\mathbf{j}} + \frac{2t}{5}\underline{\mathbf{k}}$$

where \underline{i} is a unit vector to the east, \underline{j} is a unit vector to the north and \underline{k} is a unit vector vertically up. Displacement components are measured in metres.

- (a) Find in time, in seconds, required for the helicopter to gain an altitude of **1** 60m.
- (b) Find the angle of elevation from O of the helicopter when it is at an altitude of 60m. Give your answer in degrees, correct to the nearest degree.
- (c) After how many seconds will the helicopter first be directly above the point **1** of take-off?
- (d) \bigcirc Show that the velocity of the helicopter is perpendicular to its **3** acceleration.
- (e) (?) Find the speed of the helicopter in ms^{-1} , giving your answer correct to 2 two decimal places.
- (f) A treetop has position vector $\mathbf{r} = 60\mathbf{i} + 40\mathbf{j} + 8\mathbf{k}$. Find the distance of the helicopter from the treetop after it has been travelling for 45 seconds. Give your answer in metres, correct to one decimal place.

7.11 2016 VCE Specialist Mathematics

7.11.1 Paper 2 Section 1

11. Let $\underline{a} = 3\underline{i} + 2\underline{j} + \alpha \underline{k}$ and $\underline{b} = 4\underline{i} - \underline{j} + \alpha^2 \underline{k}$, where α is a real constant. If the scalar projection of \underline{a} in the direction of \underline{b} is $\frac{74}{\sqrt{273}}$, then α equals (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

- **12.** If $\underline{a} = -2\underline{i} \underline{j} + 3\underline{k}$ and $\underline{b} = -m\underline{i} + \underline{j} + 2\underline{k}$, where *m* is a real constant, the vector $\underline{a} \underline{b}$ will be perpendicular to vector \underline{b} where *m* equals
 - (A) 0 only (B) 2 only (C) 0 or 2 (D) 4.5 (E) 0 or -2

7.12 2016 WACE Mathematics Specialist

7.12.1 Calculator free

Question 7

Points A and B have respective position vectors

$$\begin{pmatrix} 4\\0\\3 \end{pmatrix} \text{ and } \begin{pmatrix} 0\\-2\\5 \end{pmatrix}.$$

(a) Determine the vector equation for the sphere that has \overrightarrow{AB} as its diameter. **3**

(b) If point O is the origin, consider the plane that contains the vectors \overrightarrow{OA} and 4 \overrightarrow{OB} .

Determine the vector equation for this plane in the form

 $\mathbf{\underline{r}} \cdot \mathbf{\underline{n}} = c$

7.13 2017 VCE Specialist Mathematics

7.13.1 Paper 1

Question 5

Relative to a fixed origin, the points B, C and D are defined respectively by the position vectors $\underline{b} = \underline{i} - \underline{j} + 2\underline{k}, \underline{c} = 2\underline{i} - \underline{j} + \underline{k}$ and $\underline{d} = a\underline{i} - 2\underline{j} + \underline{k}$, where a is a real constant.

Given that the magnitude of $\angle BCD$ is $\frac{\pi}{3}$, find a.

7.14 2018 VCE Specialist Mathematics

7.14.1 Paper 2 Section 1

14. The scalar projection of $\underline{a} = 3\underline{i} - 2\underline{k}$ in the direction of $\underline{b} = -\underline{i} + 2\underline{j} + 3\underline{k}$ is

(A)
$$-\frac{9\sqrt{13}}{13}$$
 (C) $-\frac{9\sqrt{14}}{14}$ (E) $-\frac{\sqrt{14}}{2}$

(B)
$$-\frac{9}{14}(-\underline{i}+2\underline{j}+3\underline{k})$$
 (D) $-\frac{9}{13}(3\underline{i}-2\underline{k})$

7.15 2019 VCE Specialist Mathematics

7.15.1 Paper 2 Section 1

12. The vector projection of $\underline{i} + \underline{j} - \underline{k}$ in the direction of $m\underline{i} + n\underline{j} + p\underline{k}$ is $2\underline{i} - 3\underline{j} + \underline{k}$, **1** where m, n and p are real constants. The values of m, n and p can be found by solving the equations

(A)
$$\frac{m(m+n-p)}{m^2+n^2+p^2} = 2$$
, $\frac{n(m+n-p)}{m^2+n^2+p^2} = -3$ and $\frac{p(m+n-p)}{m^2+n^2+p^2} = 1$

- (B) $\frac{m(m+n-p)}{m^2+n^2+p^2} = 1$, $\frac{n(m+n-p)}{m^2+n^2+p^2} = 1$ and $\frac{p(m+n-p)}{m^2+n^2+p^2} = -1$
- (C) m + n p = 6, m + n p = -9 and m + n p = -3

(D)
$$m + n - p = 3m$$
, $m + n - p = 3n$ and $m + n - p = -3p$

(E)
$$m+n-p = 2\sqrt{3}, m+n-p = -3\sqrt{3} \text{ and } m+n-p = \sqrt{3}$$

7.15.2 Paper 2 Section 2

Question 4

The base of a pyramid is the parallelogram ABCD with vertices at points A(2, -1, 3), B(4, -2, 1), C(a, b, c) and D(4, 3, -1). The apex (top) of the pyramid is located at P(4, -4, 9).

(a)Find the values of a, b and c. $\mathbf{2}$ Find the cosine of the angle between the vectors \overrightarrow{AB} and \overrightarrow{AD} . (b)2 (c) Find the area of the base of the pyramid. $\mathbf{2}$ Show that $6\underline{i} + 2\underline{j} + 5\underline{k}$ is perpendicular to both \overrightarrow{AB} and \overrightarrow{AD} , and hence find (d)3 a unit vector that is perpendicular to the base of the pyramid. (e)Find the volume of the pyramid. 2

NESA Reference Sheet – calculus based courses

NSW Education Standards Authority

2020 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length

 $l = \frac{\theta}{360} \times 2\pi r$

Area

 $A = \frac{\theta}{360} \times \pi r^2$ $A = \frac{h}{2} (a+b)$

Surface area

 $A = 2\pi r^2 + 2\pi rh$ $A = 4\pi r^2$

Volume

 $V = \frac{1}{3}Ah$ $V = \frac{4}{3}\pi r^3$

Functions

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

For
$$ax^3 + bx^2 + cx + d = 0$$
:
 $\alpha + \beta + \gamma = -\frac{b}{a}$
 $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$
and $\alpha\beta\gamma = -\frac{d}{a}$

Relations

 $(x-h)^{2} + (y-k)^{2} = r^{2}$

Financial Mathematics

$$A = P(1+r)^n$$

Sequences and series

$$T_{n} = a + (n - 1)d$$

$$S_{n} = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2}(a + l)$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(1 - r^{n})}{1 - r} = \frac{a(r^{n} - 1)}{r - 1}, r \neq 1$$

$$S = \frac{a}{1 - r}, |r| < 1$$

Logarithmic and Exponential Functions

$$\log_{a} a^{x} = x = a^{\log_{a} x}$$
$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$
$$a^{x} = e^{x \ln a}$$

Trigonometric Functions Statistical Analysis $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ An outlier is a score $z = \frac{x - \mu}{\sigma}$ less than $Q_1 - 1.5 \times IQR$ $A = \frac{1}{2}ab\sin C$ more than $Q_3 + 1.5 \times IQR$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Normal distribution $c^2 = a^2 + b^2 - 2ab\cos C$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ $\sqrt{3}$ $l = r\theta$ $A = \frac{1}{2}r^2\theta$ 2 Ò -3 _2 -1approximately 68% of scores have **Trigonometric identities** z-scores between -1 and 1 $\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$ approximately 95% of scores have z-scores between –2 and 2 $\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$ approximately 99.7% of scores have z-scores between -3 and 3 $\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$ $E(X) = \mu$ $Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$ $\cos^2 x + \sin^2 x = 1$ Probability **Compound angles** $P(A \cap B) = P(A)P(B)$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) \neq 0$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1+t^2}$ Continuous random variables $P(X \le x) = \int_{-\infty}^{+\infty} f(x) dx$ $\cos A = \frac{1-t^2}{1+t^2}$ $P(a < X < b) = \int_{-b}^{b} f(x) dx$ $\tan A = \frac{2t}{1-t^2}$ $\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$ **Binomial distribution** $\sin A \sin B = \frac{1}{2} \left[\cos(A - B) - \cos(A + B) \right]$ $P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$ $X \sim \operatorname{Bin}(n, p)$ $\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$ $\Rightarrow P(X = x)$ $=\binom{n}{x}p^{x}(1-p)^{n-x}, x=0, 1, \dots, n$ $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$ $\sin^2 nx = \frac{1}{2}(1 - \cos 2nx)$ E(X) = npVar(X) = np(1-p) $\cos^2 nx = \frac{1}{2}(1 + \cos 2nx)$

- 2 -

Differential Calculus

Integral Calculus

FunctionDerivative
$$y = f(x)^n$$
 $\frac{dx}{dx} = nf'(x)[f(x)]^{n-1}$ $\int f'(x)[f(x)]^n dx = \frac{1}{n+1}[f(x)]^{n+1} + c$
where $n \neq -1$ $y = uv$ $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $\int f'(x)\sin f(x) dx = -\cos f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\int f'(x)\cos f(x) dx = \sin f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = \frac{dy}{u^2} \times \frac{du}{dx}$ $\int f'(x) \csc^2 f(x) dx = \sin f(x) + c$ $y = g(u)$ where $u = f(x)$ $\frac{dy}{dx} = f'(x) \cos f(x)$ $\int f'(x) \sec^2 f(x) dx = \tan f(x) + c$ $y = \sin f(x)$ $\frac{dy}{dx} = f'(x) \cos f(x)$ $\int f'(x) e^{f(x)} dx = e^{f(x)} + c$ $y = \cos f(x)$ $\frac{dy}{dx} = f'(x) \sec^2 f(x)$ $\int f'(x) a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + c$ $y = tan f(x)$ $\frac{dy}{dx} = f'(x) e^{f(x)}$ $\int f'(x) a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + c$ $y = \ln f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$ $\int \frac{dy}{\sqrt{a^2} - [f(x)]^2} dx = \sin^{-1} \frac{f(x)}{a} + c$ $y = a^{f(x)}$ $\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx = uv - \int v\frac{du}{dx} dx$ $y = \cos^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{a} f(x) dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $\int u\frac{dy}{dx} dx = uv - \int v\frac{du}{dx} dx$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$ $u^{-1} f(x) + (b) + 2[f(x_1) + \dots + f(x_{n-1})]]$ $y = \tan^{-1} f(x)$ $\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$ $u^{-1} e^{-1} a = x_0$

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} |\underline{u}| &= \left| x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= \left| \underline{u} \right| \left| \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \\ \underline{r} &= \underline{a} + \lambda \underline{b} \end{aligned}$$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

 $\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$ $x = a\cos(nt + \alpha) + c$ $x = a\sin(nt + \alpha) + c$ $\ddot{x} = -n^2(x - c)$

– 4 –

© 2018 NSW Education Standards Authority

References

Haese, M., Haese, S., & Humphries, M. (2017). *Mathematics for Australia 12 Specialist Mathematics* (2nd ed.). Haese Mathematics.

Sadler, D., & Ward, D. (2019). CambridgeMATHS Stage 6 Mathematics Extension 2 (1st ed.). Cambridge Education.